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Abstract-The instability due to thermocapillary forces at the free surface of a horizontal liquid layer 
heated from below is studied. It is shown that there exist two distinct mechanisms by which thermal effects 
can lead to a destabilizing thermocapillary force. One mechanism is associated with the modification of 
the basic temperature by the deformation of the free surface and generates long wavelength disturbances. 
The other mechanism is associated with the interaction of the basic temperature with the perturbation 
velocity field and generates disturbances the wavelength of which is of the same order as the layer depth. 
When the temperature difference across the layer is small, instability occurs when the layer is sufficiently 
thin. For larger temperature differences, thin and thick layers are unstable, while layers of moderate depth 
are stable. When the temperature difference is beyond a certain value, there is no depth that will render 
the layer stable. These results, as well as others describing the stability of the layer, are obtained in a clear 
manner by use of non-dimensional parameters which are appropriate for a comparison of theoretical 

results with experimental data. 

1. INTRODUCTION 

A LIQUID layer heated from below can be subject to 
an instability caused by forces at the free surface which 
are due to surface tension variations produced by 
temperature gradients. This type of instability was 
first examined by Pearson [l] who neglected the buoy- 
ancy effects and assumed the free surface to be non- 
deformable. Striven and Sterling [2] extended this 
analysis by considering the effects of surface defor- 
mation. They showed that disturbances of sufficiently 
large wavelength were always unstable, while dis- 
turbances of sufficiently small wavelength exhibited 
the behavior discussed by Pearson. The instability at 
large wavelengths was attributed to the omission from 
consideration of gravity in restoring the free surface. 
Smith [3] concluded that gravity becomes important 
only at small wave numbers and for thin layers of very 
viscous liquids. In all the analyses above, the marginal 
state was assumed to be stationary. For the thermo- 
capillary instability, the validity of this assumption 
cannot be proven analytically as for the Rayleigh- 
Benard problem. Vidal and Acrivos [4] provided 
numerical evidence that the marginal state for the 
problem considered by Pearson is indeed stationary. 
A similar proof for the marginal state was given by 
Takashima [5] for the problem examined by Smith. 

In the problem of thermocapillary instability in a 
liquid layer heated from below the free surface of 

t Present address : Mechanical and Aerospace Engineering 
Department, Princeton University, Princeton, NJ 08540, 
U.S.A. 

which is allowed to deform, there are some questions 
which are still unanswered. In the case where the free 
surface is nondeformable, it is well known that the 
mechanism giving rise to the therrnocapillary force 
is associated with the convective interaction of the 
perturbation velocity field and the basic temperature. 
For this mode, instability occurs for sufficiently thick 
layers [l]. However, for the deformable case, an 
increase of the layer’s depth will reinforce the stabil- 
izing effect of gravity on the surface waves. It is 
therefore reasonable to ask whether there exist depths 
that are small enough so as not to allow the interaction 
of perturbation velocity with the basic state tem- 
perature leading to instability and, at the same time, 
large enough to stabilize the surface waves. An answer 
to this question cannot be obtained from Smith’s 
analysis due to the particular set of non-dimensional 
parameters used. In that set, the layer depth appeared 
in more than one non-dimensional parameter. 

Another aspect which has not yet been resolved is 
the following. For surface waves to exist, the free 
surface must be allowed to deform. In addition, sur- 
face waves usually have large wavelengths so that 
the effects of convection are negligible. Therefore, the 
mechanism which is responsible for sustaining the 
surface deformation under the action of thenno- 
capillary forces should not be associated with the 
interaction of the perturbation velocity with the basic 
state temperature. 

In this paper, the issues discussed above will be ad- 
dressed along with some additional ones which arise in 
the course of the analysis. First the governing equations 
will be derived and then the results will be presented. 
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NOMENCLATURE 

9 gravity IJ dynamic viscosity 
h heat transfer coefficient V kinematic viscosity 
H layer depth P density 
k wave number, [kz + k:] ‘/* 

; 
surface tension 

k, wave number in x-direction amplitude of perturbation velocity. 

kY wave number in y-direction 
K thermal conductivity Non-dimensional parameters 
N amplitude of free surface defiection Bi Biot number, (h/K)(2v2/g) ‘I3 

P perturbation pressure Bo Bond number, ( p/a)(4v4g) ‘I3 
P basic state pressure M Marangoni number, 
t time - (da/dT)(AT*/pv)(2/vg) “3 
T basic state temperature Pr Prandtl number, V/K 
AT* temperature difference, TZ - T,* x Archimedes number, gH3/2v2. 
U perturbation velocity field, 

1% u, 4 Subscripts 
x, y, z spatial coordinates. C critical conditions 

i imaginary part 
Greek symbols 0 ambient conditions 

!x growth rate r real part 

;I 
free surface deflection W wall conditions. 
perturbation temperature 

0 amplitude of perturbation temperature Superscript 
K thermal diffusivity * dimensional quantities. 

2. THE GOVERNING EQUATIONS With these assumptions and scalings, the linearized 

For the scaling of the governing equations a set 
of non-dimensional parameters will be used which is 
appropriate for a comparison of the theoretical results 
with experimental data. In this set, each of the physical 
parameters with which one might control the exper- 
iment (i.e. the depth of the layer, or the temperature 
difference) appears in only a single non-dimensional 
parameter. As will be shown later, this set, which was 
introduced in ref. [6], is a very useful tool in the 
physical interpretation of the numerical results. 

Consider a horizontal liquid layer on a heated plate. 
Let x and y denote the two coordinates that are par- 
allel to the plate and let z be the coordinate per- 
pendicular to the plate. It is assumed that all physical 
properties, except the surface tension, are constant. 
The effects of compressibility and viscous dissipation 
are ignored. The surface tension is taken to depend 
on temperature in the form 

u= a,+ FT (T*-T:). 
[ 1 0 (1) 

The velocity vector II*, temperature T*, pressure 
P*. and time t*, are scaled as 

u* = 0 y 
H 

u, T* = AT*(T+@+ T: 

AT* = (T.: - T:) 

P* = pgHP+p($p, t* = ($)t. 

non-dimensional stability equations (continuity, 
momentum, and energy equations) for a three-dimen- 
sional disturbance become [7j 

u,+u,+w, = 0 (2a) 

u, = -p,+V% (2b) 

v, = -p,+V% (24 

w, = -p,+v2w (2d) 

tl,+wDT= ;V’l?. 

The above equations are supplemented with bound- 
ary conditions at the wall and the free surface. At the 
wall we have the no-slip, non-permeable, and iso- 
thermal conditions 

u=t~=w=t?=O, atz=l. @a-d) 

At the free surface the normal and shear stress con- 
ditions, the heat balance, and the kinematic condition 
are 

-2xqDP-p+w, 

+ 2x1’3 

( > 
~0 V2q = 0, at z = 0 (4a) 

u,+w, =;e,, atz=O (4b) 

n,+w, = $e,, atz-0 (4c) 
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8, = Bix”‘(qDT+ e), at 2 = 0 (4) 

q, = W, at z = 0. (k) 

The basic state is expressed by T = 1 -z and P = z. 
Substituting in the equations above the following 
expressions for the perturbation quantities : 

(w, 8, VI = [CD(z), O(z), Nl exp [i(k,x+k,y-at)] 

(5) 

the governing equations become 

(D*-k*)*Cp+ia(D*-k*)@ = 0 (6a) 

(D*-k*)@+Pr(iaO-@LIT) = 0 t6b) 

O(l) =DD(l) = O(1) = 0 (6c-e) 

(D 3 - 3k*D)O(O) + iaDD(0) 

+2k2 
k* 

DP(0) + - 
Bo x2” 

N = 0 (6f) 

(D*-k*)@(O)-k*$@(O) = 0 

D@(O) = Bix”‘[NDT(O)+@(O)] 

(69 

(6h) 

Assuming that the marginal state is stationary 
(a = 0), the system (6a)-(6i) yields the following ana- 
lytic solution [ 1, 71 : 

@ = 2[(A2+kB,)+2kB2z]cosh(kz) 

+2[(B2+kA ,)+2kA2z] sinh (kz) (7a) 

0 = Pr 
‘40 
pr+ A,z+A2z2 1 cosh(kz) 

+[BO+ B,t+ B,z*] (kz) 

where 

A,=fR,, 

Q 
Bo = -8k 

Bi 
Rz-*~$,] 

B, = -$R,, 2- T 

B _ _ Qsinh*k 

Q=2x(l+g$) 

R, = 
coshk-k sinh* k+2k2 

k’ , R2 = kd . 

The marginal state is described by the relation 

2x +~~)(l+&)=~, (8) 

where 

Table 1. Values of the non-dimensional parameters at differ- 
ent temperatures for water [14] 

T(“C] 
10 15 20 25 30 

M/AT 6.02 1.25 9.03 10.80 12.55 
(x/H’) x lo-‘* 2.87 3.77 4.86 6.16 7.64 

Box IO4 6.54 5.50 4.68 4.04 3.53 
(Bi/h) x 10’ 5.13 4.58 4.12 3.76 3.47 

Pr 9.45 8.09 7.01 6.13 5.43 

[ATI = “C, [H] = m, [h] = cal m-* s- ’ K- ‘. 

Table 2. Convergence and accuracy test: k = 3, M = 30, 
Pr=7,Bo=4.7x10e4,Bi=5 

N X. x 

6 105.0375143 
8 7.3532696 

10 7.3961195 
12 7.3962176 
14 7.3962165 7.3962165 

N, number of terms in the Chebyshev series. 
Subscripts : ‘n’, numerical solution ; ‘a’, analytical 

solution. 

F, = Ik(sinhkcoshk-k)(Bix’13sinhk+kcosh k) 

F2 = sinh3 k-k’coshk 

F3 = 8k5 cash k. 

The stability problem examined here is character- 
ized by the parameters x, M, Pr, Bi, and Bo. Since 
there is a large number of parameters, a complete 
investigation over the entire parameter space becomes 
a consuming and probably an unnecessary task. 
Therefore, the analysis will consider values of the 
parameters that are either physically meaningful or 
important in affecting the shape of stability bound- 
aries. Table 1 presents typical values of these par- 
ameters for water at different temperatures. 

The system of differential equations (6a)-(6i) was 
solved numerically using the Tau method [8], where 
the eigenfunctions 0 and 0 were expanded in Cheby- 
shev series. The resulting singular quadratic eigen- 
value problem was transformed [9, lo] into a regular 
one and then it was solved by the QZ algorithm [1 I]. 
The agreement of the computed solution with the 
analytic solution, equations (7a), (7b) and (8), at the 
marginal state was excellent [12]. As Table 2 indicates, 
ten terms in the Chebyshev series provided sufficient 
accuracy. 

3. RESULTS 

Numerical solutions obtained for various sets of 
parameters indicate that the marginal state is indeed 
stationary. A typical set of values of o for the first ten 
modes of a neutral disturbance is presented in Table 
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Table 3. Values of II for the ten first modes of a neutral 
disturbance: k = 3, M = 53, Pr = 7, Bo = lOed, Bi = IO, 

x = 7.1193 

Mode a, ai 

10 0 -64.762 
9 0 -56.231 
8 0 - 34.622 
7 0 -28.322 
6 -22.151 

1014.968 17.171 
1014.968 17.171 

0 13.048 
0 5.475 

I 0 0 

3, where mode 1 corresponds to the marginal state. 
For all modes, except modes 4 and 5, the real part of 
a is zero. Modes 4 and 5 represent waves traveling at 
equal speeds but in opposite directions and cor- 
respond to surface waves which exist even in the 
absence of the thermocapillary forces [12]. These two 
modes are always stable and disappear when Bo = 0. 

Since the marginal state is stationary, the stability 
boundaries are given by equation (8). Some neutral 
curves that arise for different values of Bo are pre- 
sented in Fig. 1. For sufficiently small Bond numbers 
there exist two separate unstable regions. The region 
in the upper-right part of the figure is bounded by a 
neutral curve (corresponding to Bo = 0.4) of the type 
found by Pearson who neglected surface deformation. 
This curve yields a minimum at x = xc,” and k = k,,, 
the latter being always nonzero. The two branches of 
this neutral curve tend to infinity as k + k, or 
k + kz, where k, and kz are determined by the follow- 
ing relation obtained from equation (8) by considering 
the limit x -+ co 

8Bi sinh3k-k’coshk 

* = k sinh k(sinh k cash k - k) ’ (9) 

Equation (9) shows that as (M Pr)/Bi -+ 00, k, -+ 0 
and k2 -+ co. As the ratio (M Pr)/Bi decreases from 
infinity, k, and k2 approach each other while, as will 

24 - 

X 

8- 

k 

FIG. I. Neutral curves for different values of Bo and M = 50, 
Pr = 7. Bi = 10. u. unstable retion. 

Figure 2 shows the effects of Marangoni number in 
the case where the Bond number is small. When M is 
sufficiently small, k,u > L,, so that there is a range of 
values of x for which the flow is stable. As M increases, 
x,” decreases while x., increases. After a certain value 

X 

k 

FIG. 2. Neutral curves for different values of&f and Pr = 7, 
Bi = 10 (M,,,i,, = 45.7), Bo = IO-‘. u, unstable region. 

be shown later, L.” increases. Finally, as (M Pr)/ 
Bi-r 32.073 from above, k, and k2 + 3.015, while 
xc,, + co. When 

MPr 
- < 32.073 

Bi 

an unstable region on the upper part of the x-k plane 
does not exist. 

The unstable region that exists on the lower left 
part of the x-k plane in Fig. 1 is bounded by a neutral 
curve which bifurcates from the k = 0 axis at a value 
of x determined by equation (8), which in the k + 0 
limit reduces to 

2/3 = 
3M 

x 4(1+Bix”‘)’ (11) 

Such an unstable region is obtained only when the 
free surface is allowed to deform. This is shown from 
equation (8) which in the Bo + 0 limit (non-deform- 
able surface) becomes 

F, = M Pr x”‘F2. (12) 
Using a small wave number expansion, the above 
equation yields 

,,3 _ 1 +OW 
x - -Bi+O(k’) (13) 

which clearly shows that there is no neutral curve 
bifurcating from the k = 0 axis. For Bo > 0, the lower 
neutral curve yields a maximum at, say, x = L., and 
k = kc_,. Except for some cases that will be discussed 
later, k,, = 0. Figure 1 shows that, as the Bond num- 
ber increases, the two unstable regions approach each 
other until they form a single unstable region. 
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x - so.o=_ 

8- 

0 1 2 3 
k 

FIG. 3. Neutral curves for different values of M and Pr = 7, 
Bi = 10 (.Vf,,,i, = 45.7), Bo = 0.5. u, unstable region. 

of M, xc.” c xc,, so that the layer is unstable for all 
values of x. As Fig. 2 shows, this happens while the 
two unstable regions remain separate. However, when 
the Bond number is sufficiently large, the two unstable 
regions approach each other, as M increases, forming 
a single region. This is shown in Fig. 3, where it is also 
shown that xc,, might occur at non-zero values of k. 
The variation of x with A4 is shown in Fig. 4. When 
M < IV,,,~,, where according to equation (10) 

M,,,~,, = 32.073; 

an unstable region in the upper part of the x-k plane 
does not exist. In this case, there is only one critical 
value of x, corresponding to the lower unstable region, 
above which value the layer is stable. As M increases 
beyond Mminr an unstable region is formed in the 
upper part of the x-k plane, so that there are two 
critical values of x. Now, there is a definite range of 
values of x for which the layer is stable. With further 
increase of M, this range decreases until the layer 
becomes unstable for all values of x. As Fig. 4 shows, 

8 

t I 

0' 
44 48 52 

M 

FIG. 4. The variation of x with M for two values of Bo and 
Pr = 7, Bi = 10 (A%&, = 45.7). ---, M,,; s, stable region. 

the effect of varying M is more pronounced on L,” 
than on xc.,. Increasing values of the Bond number 
tend to limit the stable region mainly by decreasing 
L.“. This effect is restricted to small values of L,” while 
larger ones remain unaffected, tending to infinity as 
A4 -+ M,,,,. 

As Fig. 2 indicates, there is a range of values of x 
for which both very large and short wavelength dis- 
turbances are unstable. It turns out that the growth 
rate a, of the latter form is much larger than that of 
the former form [12]. Therefore, it is expected that, in 
that case, short wavelength disturbances will manifest 
themselves first. 

Decreasing values of Bi and increasing values of Pr 
have the same effects as increasing values of M [12], 
i.e. destabilizing. The only difference is that xE., (when 
it occurs at kc,, = 0) is independent of Pr, while it 
depends on Bi. As with Mmin, there is a maximum 
value of Bi and a minimum value of Pr, defined by 

MPr 
Bi,,,,, = - 

Bi 

32.073’ 
Pr,,,i,, = 32,073 z 05) 

above and below which, respectively, an xc.” does not 
exist so that the layer becomes unstable only when 

X < &,I. 
Instability in the two regions of the X-k plane is due 

to thermocapillary forces. Apparently, the mechan- 
isms involved for growth of the disturbance in these 
regions are different. A necessary condition for these 
forces to arise is that the free surface be noniso- 
thermal. Considering real quantities and neglecting 
the contribution from the basic state profile which is 
a constant, the temperature variation at the free sur- 
face is given by the expression 

[NDT(O)+@(O)] cos4exp (qr) (16) 

where 4 = k,x+ k,y, and ai is the growth rate. The 
two terms in brackets denote the variations which 
come from the basic temperature field due to surface 
deformation and from the perturbation temperature. 
In order to examine the relative contribution of these 
two terms in the temperature variation (16), N was 
set equal to unity and O(0) was evaluated along the 
neutral curves. With this normalization equation (16) 
becomes 

[l+@(O)]COS$CXp(&f). (17) 

The variation of O(0) with k for the Bo = 0.3 neutral 
curves of Fig. 1 are presented in Fig. 5. Along the 
neutral curve which bifurcates from the k = 0 axis 
- 1 < O(0) < 0, while along the type of neutral curve 
found by Pearson O(0) > 1. Along both neutral 
curves 1 + O(0) > 0, so that the trough of the wave 
(4 = 0’) represents a hot spot and the peak of the 
wave (Q = 180’) represents a cold spot. The surface 
tension gradient that is thus established (the surface 
tension has a minimum at the trough and a maximum 
at the peak), generates a surface flow from the trough 
to the peak. 
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: .i 

-_i 

P 1 2 3 
k 

FIG. 5. The variation of O(0) along the neutral curve. 
M = 50, Pi- = 7, Bi = IO. Bo = 0.3. 

the force and the manifestation 
unstable regions, 

results shown in Fig. 5 indicate effects of 
the perturbation temperature at the free on 
the stability of the layer are different. 
unstable region O(0) -C 0, so that the perturbation 
temperature tends to cool (heat) the hot (cold) spot, 
thus stabilizing region, the 

gradient 

surface deformation. 
unstable region where O(0) > 0, the perturbation 
temperature has the opposite effect, 

layer. Moreover, since O(0) > 1, the 
destabilizing influence of 0 is greater than that result- 
ing from the modification of the basic state temper- 
ature by the free surface deformation. 

The different behavior of O(0) in the two unstable 
regions can be explained by examining the behavior 
of the perturbation temperature inside the liquid layer. 
Since NDT(O)+@(O) > 0 along both neutral curves 
when N > 0, equation (6h) indicates that at the hot 
(cold) spot heat leaves (enters) the free surface. As 
a result, the perturbation temperature profile has a 
positive (negative) slope under the hot (cold) spot. 
In Figs. 6 and 7 the profile of 0 is presented for a 
disturbance in the lower and upper neutral curves of 
Fig. 1, respectively. For the lower neutral curve, Fig. 
6 shows that heat is transferred across the film basi- 
cally by conduction. Therefore, the positive (negative) 
slope of the perturbation temperature that exists 
under the hot (cold) spot prevails throughout the 
layer. As a result, since O(1) = 0, O(0) -Z 0. For the 
upper neutral curve, Fig. 7 shows that an interior hot 
(cold) spot is formed below the hot (cold) spot of the 
free surface. This interior hot (cold) spot, which is a 
result of the convective motion, is strong enough that 
it heats (cools) the free surface by conduction. For 
both neutral curves, Figs. 6 and 7 indicate that, in 

FIG. 6. The profiles of 0 and Fat the lower neutral curve. 
x = 1.45. k = 1, M = 50, Pr = 7, Bi = 10, Bo = 0.3. 

agreement with Davis and Homsy [ 131. under the cold 
spot at the free surface there is an upward motion of 
fluid, while under the hot spot the opposite occurs. 

From the discussion above it is clear that there exist 
two mechanisms by which energy is supplied from the 
basic state to the disturbance. The first mechanism 
takes place at the free surface and is associated with 
the effect of the free surface deformation on the basic 
state temperature. This mechanism is represented by 
the term NOT(O) in the heat balance (6h). The second 
mechanism takes place in the bulk of the tluid and is 
associated with the interaction of the perturbation 
velocity field with the basic state temperature. This 
mechanism is represented by the term FDT in the 
energy equation (6b). 

The nature of these two mechanisms determines the 
region in the x-k plane where each dominates. When 
k c 1, as the analytical solution (7) shows, F = O(k’) 
while 0 and N are both order one quantities. In this 
limit, the energy equation (6b) shows that the effects of 
convection are small, so that the dominant mechanism 
for energy transfer to the disturbance is the one 
which is associated with the surface deformation. 
In addition, equation (6f) shows that what mainly 
opposes the surface deformation is gravity while the 
effects of surface tension are negligible. Therefore, 
instability will occur when the balance between the 
thermocapillary forces and the forces due to the 
hydrodynamic forces turns in favor of the former. 

.6 -Fxld’ 

.8 

-0 20 40 

FIG. 7. The profiles of 0 and F at the upper neutral curve. 
x = 14.47, k = 2.75, M = 50, Pr = 7, Bi = 10, Bo = 0.3. 
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This balance is expressed by equation (8), which in 
the k CC 1 limit and in dimensional form becomes 

3 

2 0 [ I. -; AT 

H=pg = 

I,% 
(18) 

this type of instability all show-up in condition (14) 
for this mode to exist, which in dimensional form 
yields 

[ 1 - gTAT 3 > 32.073. (20) 

If the depth of the layer is less than that indicated by 
the above expression, the layer is unstable at least 
with respect to large wavelength disturbances. For 
disturbances of somewhat smaller wavelength, the 
restoring force due to surface tension becomes impor- 
tant. As a result, a smaller depth (i.e. hydrodynamic 
pressure), is required for neutral stability. This is 
shown in all the stability diagrams, where the neutral 
curve which bifurcates from the k = 0 axis has initially 
a negative slope. 

Surface deformation is also important when 
x”j c 1 and k = O(1). In this case F = 0(x”‘), while 
0 and N are both order one quantities. As in the 
previous case, the effects of convection are small and 
the instability is associated with the modification of 
the basic temperature profile by the surface defor- 
mation. However, what now opposes the deformation 
is surface tension while the effects of gravity are 
negligible. The effects of surface tension increase as 
the wave number increases. Therefore, there is a value 
of the wave number beyond which the flow is stable. 
This is shown from equation (8), which in the x’13 + 0 
limit and in dimensional form becomes 

In the inequality above the terms in brackets is a 
measure of the thermocapillary forces, while pcP is a 
measure of the effects of convection in extracting 
energy from the basic state. Large values of both these 
quantities are favorable for instability. The dynamic 
viscosity p and heat transfer coefficient h are measures 
of the energy loss due to viscous dissipation and to 
the heat loss through the free surface, respectively. 
For instability to occur at large values of x, the energy 
transfer to the disturbance and the work done by the 
thermocapillary forces have to be enough to overcome 
both these two kinds of losses. 

4. CONCLUSIONS 

The instability due to thermocapillary forces in a 
horizontal liquid layer heated from below was exam- 
ined. It was shown that there exist two energy sources 
for the disturbance to grow. The first source is associ- 
ated with the modification of the basic temperature by 
the deformation of the free surface, while the second 
source is associated with the interaction of the basic 
temperature with the perturbation velocity field. 

[ 1 -gT AT=a, 
sinh k cash k - k 

k . (1% 
0 

When the surface tension is sufficiently large, the 
neutral curve, which bifurcates from the k = 0 axis, 
reaches the x = 0 axis at small wave numbers (see 
Figs. 1 and 2) so that the critical wave number kc., is 
zero. However, as the surface tension decreases, this 
neutral curve extends into a region where both x and 
k are order one quantities. As we will see next, for 
such values of x and k convection becomes important 
so that the perturbation temperature at the free sur- 
face has now a destabilizing influence. This influence, 
though less important than that of the surface de- 
formation, might offset the increased stabilizing 
influence of surface tension, so that a larger force due 
to hydrostatic pressure will be required for neutral 
stability. Therefore, as Figs. 1 and 3 show, for small 
values of the surface tension the critical wave number 
k, , can be nonzero. 

Using a specific set of non-dimensional parameters, 
the regions in the stability diagrams where each of the 
energy sources dominates were completely separated. 
The first source can cause instability when the layer is 
sufficiently thin. The perturbation temperature tends 
to stabilize the layer. However, the main stabilizing 
influence for this mode comes from the gravity force 
which tends to suppress the deformation of the free 
surface. Surface tension stabilizes short wavelengths 
so that the instability takes the form of large wave- 
length disturbances. In the case where the surface 
tension is sufficiently small, with the reinforcement by 
the second energy source, the instability can take the 
form of relatively short wavelengths. For the insta- 
bility caused by the second energy source the effects 
of convection are important. Therefore, it occurs at 
sufficiently thick layers at wavelengths which are of 
the order of the layer’s depth. Very large wavelength 
disturbances are stabilized via heat loss through the 
surface, while very short wavelength disturbances are 
stabilized by viscous dissipation [12]. 

When x >> 1 and k = O(l), equation (7) shows that The role of the depth of the layer was shown to be 
F and 0 are both order one quantities while very important. For sufficiently weak thermocapillary 
N = 0(x- ‘). The governing equations then show that forces, instability might occur only when the layer is 
the effects of convection become important, while the thin. For stronger forces (i.e. equation (20)), 
effects of surface deformation are negligible. In fact sufficiently thin and thick layers are unstable; only 
as equation (7) shows, this type of instability occurs layers with moderate depth are stable. As the thermo- 
even in the absence of surface deformation. The capillary forces increase, the range of depths for which 
different physical aspects which are associated with the layer is stable decreases. When these forces are 
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sufficiently strong, there is no depth that will render 3. K. A. Smith, On convective instability induced by sur- 

the liquid layer stable. face tension, J. Fluid Mech. 24,401-114 (1966). 

The examination of the effects of the layer depth H 
4. A. Vidal and A. Acrivos, Nature of the neutral state in 

and the derivation of equation (10) were based on a 
surface tension driven convection, Physics Fluids 9,615- 
617 (1966). 

non-dimensional set of oarameters in which H 5. M. Takashima, Surface tension driven instabihtv in a 

appears in one parameter only. Such results cannot liquid layer with a deformable free surface, J. Phys. Sot. 

be obtained on the basis of the sets used in previous 
Japan 50,2745-2753 (198 1). 

analyses, since H appeared in more than one par- 
6. R. E. Kelly, S. H. Davis and D. A. Goussis, On the 

instability of heated film flow with variable surface 
ameter. ’ tension, kroc. 9th Inr. Heat Transfer Co& Vol. 4, pp. 

The instability of the surface waves under the 1939-1942 (1986). 

thenrtocapillary action is very important in conditions 7. S. Sreenivasan and S. P. Lin. Surface tension driven 

of weak gravity forces. Reducing these forces will 
make the first energy source more effective in causing 8, 
instability, while the second source will remain un- 
affected. The result is that the stable region in the M- 
x plane will be considerably reduced [12]. The liquid 

9 

layer will be stable only when the depth is very thick 
and the temperature difference is small enough not to 10. 
satisfy equation (20). 

instability of a liquid film down a heated incline, Inr. J. 
Heat Mass Transfer 21. 1517-1526 (1978). 
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UNE COUCHE LIQUIDE CHAUFFE 
PAR DESSOUS 

R&urn&-On ttudie I’instabilite due a des forces thermocapillaires sur la surface libre dune couche liquide 
horizontale chau& par dessous. On montre qu’il existe deux mecanismes distincts par lesquels les effets 
thermiques peuvent conduire a une force thermocapillaire dbtabilisante. Un m&canisme est associe a la 
modification de la temperature de base par la d&formation de la surface libre et il gtnere des perturbations 
de grande longueur d’onde. L’autre mr%canisme est associe a l’interaction de la temperature de base avec 
le champ de vitesse de perturbation et il g&&e des perturbations dont la longueur d’onde est du mime 
ordre de grandeur que l’ipaisseur de la couche. Quand la difference de temperature a traven la couche est 
faible, I’instabilid se produit si I’epaisseur est suffisatnment fine. Pour de grandes differences de temperature, 
les couche minces ou bpaisses sont instables, alors que les couches d’ipaisseurs mod&es sont stables. 
Lorsque la diff&rence de temp&ature est sup&ieure a une certaine valeur, il n’y a pas d’tpaisseur qui rende 
la couche stable. Ces resultats sont obtenus dune faGon Claire en utilisant des parametres adimensionnels 

qui sont appropries pour une comparaison des rQultats theoriques et des don&es exp&imentales. 

THERMOKAPILLARE INSTABILITATEN IN EINER VON UNTEN BEHEIZTEN 
FLOSSIGKEITSSCHICHT 

Zuaammenfaasung-Die Instabilitlt in einer waagerechten, von unten beheizten Fhissigkeitsschicht auf- 
gmnd thennokapillarer Krgfte an der freien ObertXiche wird untersucht. Es zeigt sich, dag es zwei aus- 
gepdgte Mechanismen gibt, durch die therm&hen Einfliisse zu einer destabilisierenden thermokapillaren 
Kraft fiihren kiinnen. Einer der Mechanismen ist mit der Veranderung der Grundtemperatur durch die 
Deformation der freien Oberthiche verbunden, er erzeugt langwellige Stiirungen. Der andere Mechanismus 
ist mit dem Zusammenwirken der Grundtemperatur und dem Feld der Geschwindigkeitsstiirungen ver- 
bunden ; er erzeugt Stcirungen, deren WellenlPnge von derselben Gri%enordnunn wie die Schichtdicke ist. 
Wenn die Temperaturdiffe&nz quer zur Schichtklein ist. treten Instabilitiiten imFal1 ausreichend diinner 
Schichten auf. Fiir gr%ere TernperaturditTerenzen sind dlinne und dicke Schichten instabil, wahrend 
Schichten von mittlerer Dicke stabil sind. Wenn die Temperaturdifferenz einen bestimmten Wert iibersteigt, 
gibt es keine Schichtdicke, die zu stabilen Bedingungen fiihrt. Diese Ergebnisse, wie such weitere Aussagen 
zur Stabilitlt der Schicht sind in einer sehr klaren Weise unter Vetwendung dimensionsloser Parameter 
ermittelt worden, welche gut geeignet sind, urn die theoretischen Ergebnisse mit experimentellen Werten 

zu vergleichen. 
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0 TEPMOKAllHJIJUIPHbIX HEYCTOtlWiBOCT~X B HAl-PEBAEMOM CHH3Y CJ’IOE 
=uwocM 

~kicaxay~a 11cycrogwea74 nbt3Batwax TepMoramwtnptibwu cEJIaMn y cBo6oJlJlo~ 
aosepwocra aarpeBawor0 c~83y r0pu30ti~iutb~0r0 cnoX xsutXoc~u. rIo~a3a~o cymecTuo~aaxe nayx 
pUWWbU MeXaiIXUMOB. B co m&lJi C KoTOpbtMB TCIUlOBbIC 3@&XTbl npliBOJlXT L Bo3RBIMOBHlElO 

necTB6IutH3upylol.lae~ TepMOXanEJln IlpHOfi CHJtbL OJIJUI 83 HIIX CBX3aXi C 83MCttCHECM OCHOStlOi! TeMItC- 
paTypbl3a CWT nN@opMatnfE cno6oAHol aoBepXwcTn E LUlliHHOBOWOBW Bo3yu.teHHXMu. ApYrofi--c 
B3aUMOACkTBIlCM OCHOBHOti TeharepaTypbt C BO3hfyWCAsCM nOlU CXOpOCT&, ii BO3HEXalOtUHC B 3TOM 
vae ~o3~yruemi~ EMCIOT rarofi xc aopuror JZIIEIW BOJIIW, XaX n ry6arra ~JYOI. nps ~anoil p;u- 
HOCTH TCMlICpaTyp B CJtOe ECyCrOkWCl’b na6moneTcn, CSJISI cnoii HM~~T n&o- rJty6atty. nps 
6OJleC CylWCTBWHt&X pa3HOCTXX TtMtlCpaTyp TOHUiC B TOJlCTblC CJlOE SBJtIIH)TCP HCyCrOklB&IME, CJtOH 
xc ytuepe~~oik ry6wa.t yc’ro&=niabt. Koraa pa3~ocrb TchuIepaTyp npe~ocxorrm onpe~ene~~oe 3iiaqc- 
HIE, cool ne a~.aaeTcn ycrofiw~t,~~ HU aplr raroii rny6une. %I, a Tame npyrme pc3yJu.TaTbt, oancw 
BalOUUiC j’CTOhiBOCTb CJIOS, llOJly¶CHbl C BCllOJlb30BaliHCM 6e3pa3MCpHbtX tIapaMeTpos, tt0 Kol0pbI.M 

Momi coaocraexrb noptxnwcure A 3rcaepHn4eara.nbfwe AIwibIe. 


