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Abstract—The instability due to thermocapillary forces at the free surface of a horizontal liquid layer
heated from below is studied. It is shown that there exist two distinct mechanisms by which thermal effects
can lead to a destabilizing thermocapillary force. One mechanism is associated with the modification of
the basic temperature by the deformation of the free surface and generates long wavelength disturbances.
The other mechanism is associated with the interaction of the basic temperature with the perturbation
velocity field and generates disturbances the wavelength of which is of the same order as the layer depth.
When the temperature difference across the layer is small, instability occurs when the layer is sufficiently
thin. For larger temperature differences, thin and thick layers are unstable, while layers of moderate depth
are stable. When the temperature difference is beyond a certain value, there is no depth that will render
the layer stable. These results, as well as others describing the stability of the layer, are obtained in a clear
manner by use of non-dimensional parameters which are appropriate for a comparison of theoretical
results with experimental data.

1. INTRODUCTION

A LIQUID layer heated from below can be subject to
an instability caused by forces at the free surface which
are due to surface tension variations produced by
temperature gradients. This type of instability was
first examined by Pearson [1] who neglected the buoy-
ancy effects and assumed the free surface to be non-
deformable. Scriven and Sterling [2] extended this
analysis by considering the effects of surface defor-
mation. They showed that disturbances of sufficiently
large wavelength were always unstable, while dis-
turbances of sufficiently small wavelength exhibited
the behavior discussed by Pearson. The instability at
large wavelengths was attributed to the omission from
consideration of gravity in restoring the free surface.
Smith [3] concluded that gravity becomes important
only at small wave numbers and for thin layers of very
viscous liquids. In all the analyses above, the marginal
state was assumed to be stationary. For the thermo-
capillary instability, the validity of this assumption
cannot be proven analytically as for the Rayleigh—
Benard problem. Vidal and Acrivos [4] provided
numerical evidence that the marginal state for the
problem considered by Pearson is indeed stationary.
A similar proof for the marginal state was given by
Takashima [5] for the problem examined by Smith.
In the problem of thermocapillary instability in a
liquid layer heated from below the free surface of
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which is allowed to deform, there are some questions
which are still unanswered. In the case where the free
surface is nondeformable, it is well known that the
mechanism giving rise to the thermocapillary force
is associated with the convective interaction of the
perturbation velocity field and the basic temperature.
For this mode, instability occurs for sufficiently thick
layers [1]. However, for the deformable case, an
increase of the layer’s depth will reinforce the stabil-
izing effect of gravity on the surface waves. It is
therefore reasonable to ask whether there exist depths
that are small enough so as not to allow the interaction
of perturbation velocity with the basic state tem-
perature leading to instability and, at the same time,
large enough to stabilize the surface waves. An answer
to this question cannot be obtained from Smith’s
analysis due to the particular set of non-dimensional
parameters used. In that set, the layer depth appeared
in more than one non-dimensional parameter.

Another aspect which has not yet been resolved is
the following. For surface waves to exist, the free
surface must be allowed to deform. In addition, sur-
face waves usually have large wavelengths so that
the effects of convection are negligible. Therefore, the
mechanism which is responsible for sustaining the
surface deformation under the action of thermo-
capillary forces should not be associated with the
interaction of the perturbation velocity with the basic
state temperature.

In this paper, the issues discussed above will be ad-
dressed along with some additional ones which arise in
the course of the analysis. First the governing equations
will be derived and then the results will be presented.
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NOMENCLATURE
g gravity u dynamic viscosity
h heat transfer coefficient v kinematic viscosity
H  layer depth P density
k  wave number, [kZ+k7]"? o surface tension
k.,  wave number in x-direction ®  amplitude of perturbation velocity.
k,  wave number in y-direction
K thermal conductivity Non-dimensional parameters
N amplitude of free surface deflection Bi  Biot number, (h/K)(2v¥/g)"?
P perturbation pressure Bo  Bond number, (p/c)(dvig)'?
P basic state pressure M  Marangoni number,
t time —(do/dT)(AT*/pv)(2/vg)"?
T  basic state temperature Pr Prandtl number, v/k
AT* temperature difference, 75— T X Archimedes number, gH*/2v2.
u perturbation velocity field,
[u, v, w) Subscripts
x, ¥,z spatial coordinates. c critical conditions
imaginary part
Greek symbols ambient conditions

o growth rate

free surface deflection

perturbation temperature

amplitude of perturbation temperature
thermal diffusivity

?E@CD:

i
o
r real part
w wall conditions.

Superscript
* dimensional quantities.

2. THE GOVERNING EQUATIONS

For the scaling of the governing equations a set
of non-dimensional parameters will be used which is
appropriate for a comparison of the theoretical results
with experimental data. In this set, each of the physical
parameters with which one might control the exper-
iment (i.e. the depth of the layer, or the temperature
difference) appears in only a single non-dimensional
parameter. As will be shown later, this set, which was
introduced in ref. [6]}, is a very useful tool in the
physical interpretation of the numerical results.

Consider a horizontal liquid layer on a heated plate.
Let x and y denote the two coordinates that are par-
allel to the plate and let z be the coordinate per-
pendicular to the plate. It is assumed that all physical
properties, except the surface tension, are constant.
The effects of compressibility and viscous dissipation
are ignored. The surface tension is taken to depend
on temperature in the form

d
6=0,+ [E;l(r*— ). )

The velocity vector u*, temperature T*, pressure
P*, and time ¥, are scaled as

u* = (fll)u T* = AT*(T+6)+T

AT* = (T2—T%

pr = pgrtp+ o LYo o+ = ()
=p9 PHPs - v .

With these assumptions and scalings, the linearized
non-dimensional stability equations (continuity,
momentum, and energy equations) for a three-dimen-
sional disturbance become [7}

u +v,+w, =0 (22)
u=—p,+Vu (2b)
v, = —p,+V% (20)
w, = —p,+Vw 2d)

l 2
9,+wDT—EV 0. (2e)

The above equations are supplemented with bound-
ary conditions at the wall and the free surface. At the
wall we have the no-slip, non-permeable, and iso-
thermal conditions

=U=w=0=0, atz=l. (3a“d)

At the free surface the normal and shear stress con-
ditions, the heat balance, and the kinematic condition
are

—=2NDP—p+w,
+ (%)V’r] =0, atz=0 (4a)
"+ w, = %Jio,,, atz=0 (4b)
gz+wy=%f0,y, atz=20 (4c)
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6, = Biy"*(n DT+ 0), atz=0 4d)

n=w atz=0. (4¢)

The basic state is expressed by T'=1—z and P = z.
Substituting in the equations above the following
expressions for the perturbation quantities :

(w,8,n) = [®(2),0(z), Nlexp [i(k, x+k,y—at)]

&)

the governing equations become
(D? k)0 +ia(D*—kH)D =0 (6a)
(D?~k*)O+ Pr(ia®—-dDT) =0 (6b)

®(1) =DO(1) = O(1) =0
(D? =3k*D)®(0) +iaDD(0)

(6c—¢)

2

k
+2k2(DP(0)+ W)N =0 (6f)

(D —k?)D(0) —k’%’;D@(O) =0 (69
DO(0) = Biy *[NDT(0)+®©(0)]  (6h)
N= i¢§0) . (6i)

Assuming that the marginal state is stationary
(o = 0), the system (6a)—(6i) yields the following ana-
lytic solution [1, 7]:

® = 2{(A4,+kB))+2kB,z) cosh (kz)
+2[(By;+kA\)+2kA,z)sinh (kz) (7a)

A
0= Pr{[ﬁ + 4 ,z+Azzz] cosh (kz)

+[By+ B z+ B,2%]sinh (kz) (7b)

where
QR Y Y
A0=W3—'Fr—l, Ay=g Ry, A=%ZR
0 Bi
Bo=—ge| B8 ym R
0 Qsinh’k
Bl'_‘—gERh B, = —T
kZ
0=(1+ 57)
coshk—k sinh? k + 2k?
RI = k3 ’ 2= k4

The marginal state is described by the relation

F k?
) (S L

where
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Table 1. Values of the non-dimensional parameters at differ-
ent temperatures for water [14]

T(°C)
o 15 20 25 30
M/AT 602 725 903 1080 12.55
(WH)*x10-'2 287 377 486 616 7.64
Box 10* 6.54 550 468 404 353
(Bijmyx10* 513 458 412 376 347
Pr 945 809 701 613 543

[AT)=°C,[H] =m, [h] =calm~2s" 'K~

Table 2. Convergence and accuracy test: k =3, M = 30,
Pr=7,Bo=4Tx10"% Bi=S$§

N Aa ta
6 105.0375143
8 7.3532696
10 7.3961195
12 7.3962176
14 7.3962165 7.3962165

N, number of terms in the Chebyshev series.
Subscripts: ‘n’, numerical solution; ‘a’,

solution.

analytical

Fy = 8k(sinh k cosh k —k)(Biy"/? sinh k+ k cosh k)
F, =sinh® k—k*coshk
F; =8k%coshk.

The stability problem examined here is character-
ized by the parameters y, M, Pr, Bi, and Bo. Since
there is a large number of parameters, a complete
investigation over the entire parameter space becomes
a consuming and probably an unnecessary task.
Therefore, the analysis will consider values of the
parameters that are either physically meaningful or
important in affecting the shape of stability bound-
aries. Table 1 presents typical values of these par-
ameters for water at different temperatures.

The system of differential equations (6a)-(6i) was
solved numerically using the Tau method {8], where
the eigenfunctions ® and © were expanded in Cheby-
shev series. The resulting singular quadratic eigen-
value problem was transformed [9, 10] into a regular
one and then it was solved by the QZ algorithm [11].
The agreement of the computed solution with the
analytic solution, equations (7a), (7b) and (8), at the
marginal state was excellent [12]. As Table 2 indicates,
ten terms in the Chebyshev series provided sufficient
accuracy.

3. RESULTS

Numerical solutions obtained for various sets of
parameters indicate that the marginal state is indeed
stationary. A typical set of values of « for the first ten
modes of a neutral disturbance is presented in Table



2240

Table 3. Values of x for the ten first modes of a neutral
disturbance: k=3, M =53, Pr=7, Bo=10"% Bi= 10,

= 7.1193

Mode a, o
10 0 —64.762
9 0 —56.231
8 0 —34.622
7 0 —28.322
6 0 —22.151
5 1014.968 —-17.171
4 —1014.968 —17.171
3 0 —13.048
2 0 —5.475

1 0 0

3, where mode 1 corresponds to the marginal state.
For all modes, except modes 4 and 5, the real part of
o is zero. Modes 4 and 5 represent waves traveling at
equal speeds but in opposite directions and cor-
respond to surface waves which exist even in the
absence of the thermocapillary forces [12]. These two
modes are always stable and disappear when Bo = 0.

Since the marginal state is stationary, the stability
boundaries are given by equation (8). Some neutral
curves that arise for different values of Bo are pre-
sented in Fig. 1. For sufficiently small Bond numbers
there exist two separate unstable regions. The region
in the upper-right part of the figure is bounded by a
neutral curve {corresponding to Bo = 0.4) of the type
found by Pearson who neglected surface deformation.
This curve yields a minimum at y = ¥, and k = k_,,
the latter being always nonzero. The two branches of
this neutral curve tend to infinity as k—k, or
k — k,, where k, and k, are determined by the follow-
ing relation obtained from equation (8) by considering
the limit y - c0

88i  sinh’k—k’coshk
MPr~ ksinhk(sinhkcoshk—k)’
Equation (9) shows that as (M Pr)/Bi— w0, kK, >0

and k, — co. As the ratio (M Pr)/Bi decreases from
infinity, k, and k, approach each other while, as will

®)
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F1G. 1. Neutral curves for different values of Bo and M = 50,
Pr =17, Bi = 10. u, unstable region.
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F1G. 2. Neutral curves for different values of M and Pr = 7,
Bi = 10 (M, = 45.7), Bo = 10~*. u, unstable region.

be shown later, yx., increases. Finally, as (M Pr)/
Bi— 32.073 from above, k, and &k, — 3.015, while
Yew — 0. When

M Pr

Bi < 32.073

(10)

an unstable region on the upper part of the y—k plane
does not exist.

The unstable region that exists on the lower left
part of the y—k plane in Fig. 1 is bounded by a neutral
curve which bifurcates from the k = 0 axis at a value
of y determined by equation (8), which in the k -0
limit reduces to

3 M
A v e PR VAT
41+ Biy'"?)
Such an unstable region is obtained only when the
free surface is allowed to deform. This is shown from

equation (8) which in the Bo — 0 limit (non-deform-
able surface) becomes

F, = M Pry"F,.

an

(12)

Using a small wave number expansion, the above
equation yields

v 1HO0E)
—Bi+ 00

which clearly shows that there is no neutral curve
bifurcating from the k = 0 axis. For Bo > 0, the lower
neutral curve yields a maximum at, say, ¥ = ., and
k = k.. Except for some cases that will be discussed
later, k., = 0. Figure 1 shows that, as the Bond num-
ber increases, the two unstable regions approach each
other until they form a single unstable region.

Figure 2 shows the effects of Marangoni number in
the case where the Bond number is small. When M is
sufficiently small, %, > %, so that there is a range of
values of ¢ for which the flow is stable. As M increases,
%.. decreases while . ; increases. After a certain value

(13)



On the thermocapillary instabilities in a liquid layer heated from below

FiG. 3. Neutral curves for different values of M and Pr=7,
Bi =10 (M, = 45.7), Bo = 0.5. u, unstable region.

of M, Y. < % S0 that the layer is unstable for all
values of %. As Fig. 2 shows, this happens while the
two unstable regions remain separate. However, when
the Bond number is sufficiently large, the two unstable
regions approach each other, as M increases, forming
a single region. This is shown in Fig. 3, where it is also
shown that Y., might occur at non-zero values of k.
The variation of y. with M is shown in Fig. 4. When
M < M., where according to equation (10)
Bi

My, = 32.073E (14)
an unstable region in the upper part of the -k plane
does not exist. In this case, there is only one critical
value of %, corresponding to the lower unstable region,
above which value the layer is stable. As M increases
beyond M,;,, an unstable region is formed in the
upper part of the x~k plane, so that there are two
critical values of x. Now, there is a definite range of
values of y, for which the layer is stable. With further
increase of M, this range decreases until the layer
becomes unstable for all values of x. As Fig. 4 shows,

6.-
4
<
[-3
o
2-
o i A i A L.
44 48 52

FIG. 4. The variation of %, with M for two values of Bo and
Pr=17,Bi=10 (M, = 45.7). ———, M,,; s, stable region.
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the effect of varying M is more pronounced on ¥y,
than on ¥ ,. Increasing values of the Bond number
tend to limit the stable region mainly by decreasing
Y This effect is restricted to small values of ., while
larger ones remain unaffected, tending to infinity as
M- M min*

As Fig. 2 indicates, there is a range of values of ¥
for which both very large and short wavelength dis-
turbances are unstable. It turns out that the growth
rate o; of the latter form is much larger than that of
the former form [12]. Therefore, it is expected that, in
that case, short wavelength disturbances will manifest
themselves first.

Decreasing values of Bi and increasing values of Pr
have the same effects as increasing values of M [12],
i.e. destabilizing. The only difference is that y. , (when
it occurs at k., = 0) is independent of Pr, while it
depends on Bi. As with M, there is a maximum
value of Bi and a minimum value of Pr, defined by

M Pr

. Bi
Bi,. = 33073 Pryin = 32.073;‘—[ (15)

above and below which, respectively, an %, does not
exist so that the layer becomes unstable only when
X < Xc.l-

Instability in the two regions of the y—k plane is due
to thermocapillary forces. Apparently, the mechan-
isms involved for growth of the disturbance in these
regions are different. A necessary condition for these
forces to arise is that the free surface be noniso-
thermal. Considering real quantities and neglecting
the contribution from the basic state profile which is
a constant, the temperature variation at the free sur-
face is given by the expression

[N DT(0)+©(0)] cos ¢ exp (1) (16)

where ¢ = k. x+k,y, and o; is the growth rate. The
two terms in brackets denote the variations which
come from the basic temperature field due to surface
deformation and from the perturbation temperature.
In order to examine the relative contribution of these
two terms in the temperature variation (16), N was
set equal to unity and ©(0) was evaluated along the
neutral curves. With this normalization equation (16)
becomes

[14+©(0)] cos ¢ exp (x;1). an

The variation of ®(0) with & for the Bo = 0.3 neutral
curves of Fig. 1 are presented in Fig. 5. Along the
neutral curve which bifurcates from the k = 0 axis
—1 < ©(0) < 0, while along the type of neutral curve
found by Pearson ©(0) > 1. Along both neutral
curves 14+ ©(0) > 0, so that the trough of the wave
(¢ = 0°) represents a hot spot and the peak of the
wave (¢ = 180°) represents a cold spot. The surface
tension gradient that is thus established (the surface
tension has a minimum at the trough and a maximum
at the peak), generates a surface flow from the trough
to the peak.
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FiG. 5. The variation of ©(0) along the neutral curve.
M =50, Pr=7 Bi=10,Bo=023.

Although the driving force and the manifestation
of instability are the same in the two unstable regions,
the results shown in Fig. 5 indicate that the effects of
the perturbation temperature at the free surface on
the stability of the layer are different. In the lower
unstable region ©(0) < 0, so that the perturbation
temperature tends to cool (heat) the hot (cold) spot,
thus stabilizing the flow. Therefore, in this region, the
surface tension gradient necessary for instability is a
direct result of the modification of the basic state
temperature by the surface deformation. In the upper
unstable region where ®(0) > 0, the perturbation
temperature has the opposite effect, i.e. it tends to
destabilize the layer. Moreover, since ®(0) > 1, the
destabilizing influence of @ is greater than that result-
ing from the modification of the basic state temper-
ature by the free surface deformation.

The different behavior of @(0) in the two unstable
regions can be explained by examining the behavior
of the perturbation temperature inside the liquid layer.
Since NDT(0)+©(0) > 0 along both neutral curves
when N > 0, equation (6h) indicates that at the hot
(cold) spot heat leaves (enters) the free surface. As
a result, the perturbation temperature profile has a
positive (negative) slope under the hot (cold) spot.
In Figs. 6 and 7 the profile of @ is presented for a
disturbance in the lower and upper neutral curves of
Fig. 1, respectively. For the lower neutral curve, Fig.
6 shows that heat is transferred across the film basi-
cally by conduction. Therefore, the positive (negative)
slope of the perturbation temperature that exists
under the hot (cold) spot prevails throughout the
layer. As a result, since ©(1) = 0, ®(0) < 0. For the
upper neutral curve, Fig. 7 shows that an interior hot
(cold) spot is formed below the hot (cold) spot of the
free surface. This interior hot (cold) spot, which is a
result of the convective motion, is strong enough that
it heats (cools) the free surface by conduction. For
both neutral curves, Figs. 6 and 7 indicate that, in

D. A. Goussis and R. E. KELLY
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FiG. 6. The profiles of © and F at the lower neutral curve.
xt=145k=1,M=250,Pr=717 Bi=10, Bo=03.

agreement with Davis and Homsy [13]. under the cold
spot at the free surface there is an upward motion of
fluid, while under the hot spot the opposite occurs.

From the discussion above it is clear that there exist
two mechanisms by which energy is supplied from the
basic state to the disturbance. The first mechanism
takes place at the free surface and is associated with
the effect of the free surface deformation on the basic
state temperature. This mechanism is represented by
the term NDT(0) in the heat balance (6h). The second
mechanism takes place in the bulk of the fluid and is
associated with the interaction of the perturbation
velocity field with the basic state temperature. This
mechanism is represented by the term FDT in the
energy equation (6b).

The nature of these two mechanisms determines the
region in the y—k plane where each dominates. When
k « 1, as the analytical solution (7) shows, F = O(k*)
while @ and N are both order one quantities. In this
limit, the energy equation (6b) shows that the effects of
convection are small, so that the dominant mechanism
for energy transfer to the disturbance is the one
which is associated with the surface deformation.
In addition, equation (6f) shows that what mainly
opposes the surface deformation is gravity while the
effects of surface tension are negligible. Therefore,
instability will occur when the balance between the
thermocapillary forces and the forces due to the
hydrodynamic forces turns in favor of the former.

0
2+ e
2
af
sl Fx10"
8}
10 e
0 20 40

F1G. 7. The profiles of © and F at the upper neutral curve.
x=1447, k=275 M =50, Pr=17, Bi =10, Bo = 0.3.
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This balance is expressed by equation (8), which in
the k « 1 limit and in dimensional form becomes

(18)

If the depth of the layer is less than that indicated by
the above expression, the layer is unstable at least
with respect to large wavelength disturbances. For
disturbances of somewhat smaller wavelength, the
restoring force due to surface tension becomes impor-
tant. As a result, a smaller depth (i.e. hydrodynamic
pressure), is required for neutral stability. This is
shown in all the stability diagrams, where the neutral
curve which bifurcates from the £ = 0 axis has initially
a negative slope.

Surface deformation is also important when
1'? « 1 and k = O(1). In this case F = O(x"'?), while
© and N are both order one quantities. As in the
previous case, the effects of convection are small and
the instability is associated with the modification of
the basic temperature profile by the surface defor-
mation. However, what now opposes the deformation
is surface tension while the effects of gravity are
negligible. The effects of surface tension increase as
the wave number increases. Therefore, there is a value
of the wave number beyond which the flow is stable.
This is shown from equation (8), which in the x> — 0
limit and in dimensional form becomes

do
[:— H.]OAT= %

When the surface tension is sufficiently large, the
neutral curve, which bifurcates from the k = 0 axis,
reaches the y = 0 axis at small wave numbers (see
Figs. 1 and 2) so that the critical wave number k., is
zero. However, as the surface tension decreases, this
neutral curve extends into a region where both ¥ and
k are order one quantities. As we will see next, for
such values of y and k convection becomes important
so that the perturbation temperature at the free sur-
face has now a destabilizing influence. This influence,
though less important than that of the surface de-
formation, might offset the increased stabilizing
influence of surface tension, so that a larger force due
to hydrostatic pressure will be required for neutral
stability. Therefore, as Figs. 1 and 3 show, for small
values of the surface tension the critical wave number
k.., can be nonzero.

When x » 1 and k = O(1), equation (7) shows that
F and © are both order one quantities while
N = O(x~"). The governing equations then show that
the effects of convection become important, while the
effects of surface deformation are negligible. In fact
as equation (7) shows, this type of instability occurs
even in the absence of surface deformation. The
different physical aspects which are associated with

sinhkczshk—k. (19)
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this type of instability all show-up in condition (14)
for this mode to exist, which in dimensional form
yields

[_ E‘EAT]& > 32.073. 20)

dT uh

In the inequality above the terms in brackets is a
measure of the thermocapillary forces, while pc, is a
measure of the effects of convection in extracting
energy from the basic state. Large values of both these
quantities are favorable for instability. The dynamic
viscosity u and heat transfer coefficient 4 are measures
of the energy loss due to viscous dissipation and to
the heat loss through the free surface, respectively.
For instability to occur at large values of i, the energy
transfer to the disturbance and the work done by the
thermocapillary forces have to be enough to overcome
both these two kinds of losses.

4. CONCLUSIONS

The instability due to thermocapillary forces in a
horizontal liquid layer heated from below was exam-
ined. It was shown that there exist two energy sources
for the disturbance to grow. The first source is associ-
ated with the modification of the basic temperature by
the deformation of the free surface, while the second
source is associated with the interaction of the basic
temperature with the perturbation velocity field.

Using a specific set of non-dimensional parameters,
the regions in the stability diagrams where each of the
energy sources dominates were completely separated.
The first source can cause instability when the layer is
sufficiently thin. The perturbation temperature tends
to stabilize the layer. However, the main stabilizing
influence for this mode comes from the gravity force
which tends to suppress the deformation of the free
surface. Surface tension stabilizes short wavelengths
so that the instability takes the form of large wave-
length disturbances. In the case where the surface
tension is sufficiently small, with the reinforcement by
the second energy source, the instability can take the
form of relatively short wavelengths. For the insta-
bility caused by the second energy source the effects
of convection are important. Therefore, it occurs at
sufficiently thick layers at wavelengths which are of
the order of the layer’s depth. Very large wavelength
disturbances are stabilized via heat loss through the
surface, while very short wavelength disturbances are
stabilized by viscous dissipation [12].

The role of the depth of the layer was shown to be
very important. For sufficiently weak thermocapillary
forces, instability might occur only when the layer is
thin. For stronger forces (i.e. equation (20)),
sufficiently thin and thick layers are unstable; only
layers with moderate depth are stable. As the thermo-
capillary forces increase, the range of depths for which
the layer is stable decreases. When these forces are
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sufficiently strong, there is no depth that will render
the liquid layer stable.

The examination of the effects of the layer depth H
and the derivation of equation (10) were based on a
non-dimensional set of parameters in which H
appears in one parameter only. Such results cannot
be obtained on the basis of the sets used in previous
analyses, since H appeared in more than one par-
ameter.’

The instability of the surface waves under the
thermocapillary action is very important in conditions
of weak gravity forces. Reducing these forces will
make the first energy source more effective in causing
instability, while the second source will remain un-
affected. The result is that the stable region in the M-
%, plane will be considerably reduced [12]. The liquid
layer will be stable only when the depth is very thick
and the temperature difference is small enough not to
satisfy equation (20).
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INSTABILITES THERMOCAPILLAIRES DANS UNE COUCHE LIQUIDE CHAUFFE
PAR DESSOUS

Résumé—On étudie I'instabilité due a des forces thermocapillaires sur la surface libre d’une couche liquide
horizontale chauffée par dessous. On montre qu'il existe deux mécanismes distincts par lesquels les effets
thermiques peuvent conduire 4 une force thermocapillaire déstabilisante. Un mécanisme est associé 4 la
modification de la température de base par la déformation de la surface libre et il génére des perturbations
de grande longueur d’onde. L’autre mécanisme est associé & I'interaction de la température de base avec
le champ de vitesse de perturbation et il génére des perturbations dont la longueur d’onde est du méme
ordre de grandeur que Iépaisseur de la couche. Quand la différence de température a travers la couche est
faible, 'instabilité se produit si I'épaisseur est suffisamment fine. Pour de grandes différences de température,
les couche minces ou épaisses sont instables, alors que les couches d’épaisseurs modérées sont stables.
Lorsque la différence de température est supérieure 4 une certaine valeur, il n'y a pas d’épaisseur qui rende
la couche stable. Ces résultats sont obtenus d’une fagon claire en utilisant des paramétres adimensionnels
qui sont appropriés pour une comparaison des résultats théoriques et des données expérimentales.

THERMOKAPILLARE INSTABILITATEN IN EINER VON UNTEN BEHEIZTEN
FLUSSIGKEITSSCHICHT

Zusammenfassung—Die Instabilitit in einer waagerechten, von unten beheizten Fliissigkeitsschicht auf-
grund thermokapillarer Krifte an der freien Oberfidche wird untersucht. Es zeigt sich, daB es zwei aus-
gepragte Mechanismen gibt, durch die thermischen Einfliisse zu einer destabilisierenden thermokapillaren
Kraft fithren konnen. Einer der Mechanismen ist mit der Verinderung der Grundtemperatur durch die
Deformation der freien Oberfliche verbunden, er erzeugt langwellige Stérungen. Der andere Mechanismus
ist mit dem Zusammenwirken der Grundtemperatur und dem Feld der Geschwindigkeitsstdrungen ver-
bunden ; er erzeugt Storungen, deren Wellenldnge von derselben GréBenordnung wie die Schichtdicke ist.
Wenn die Temperaturdifferenz quer zur Schicht klein ist, treten Instabilitdten im Fall ausreichend diinner
Schichten auf. Fiir groBere Temperaturdifferenzen sind diinne und dicke Schichten instabil, wahrend
Schichten von mittlerer Dicke stabil sind. Wenn die Temperaturdifferenz einen bestimmten Wert iibersteigt,
gibt es keine Schichtdicke, die zu stabilen Bedingungen fiihrt. Diese Ergebnisse, wie auch weitere Aussagen
zur Stabilitdt der Schicht sind in einer sehr klaren Weise unter Verwendung dimensionsloser Parameter
ermittelt worden, welche gut geeignet sind, um die theoretischen Ergebnisse mit experimentellen Werten
zu vergleichen.
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O TEPMOKAITWILNAPHAIX HEYCTORYUBOCTAX B HATPEBAEMOM CHH3Y CJIOE
XKHUAKOCTH

Amsorams—Hccnenyerca HeyCTOHYHBOCTL, BHI3BAHHAA TCPMOKAMAUIADHBIMH CHIaMH y cBoSoaHoit
TIOBEPXHOCTH HarpepacMoro CHH3y FOPHIOHTANBHOTO CJI08 XHAKOCTH. [loxalaHo CymecTpoBaHHE IBYX
Pa3IHYHBIX MCXAHU3MOB, B COOTBETCTBHH C KOTOPBIME TCIL10Bb¢ 3deKTH NPHBOIAT K BOIHHKHOBCHHIO
necrabunnsapyomeit TepMoxamNKpHOR cibl. OHH H3 HUX CBA33H C HIMCHCHHEM OCHOBHOM Temme-
paTyphi 3a cueT achopMaim cso50IHOM NOBEPXHOCTH H UTHHHOBOTHOBHMHE BO3YIICHUAME. JIpyrof—c
B3aHMOACHCTBHEM OCHOBHON TEMIICPATYPHI C BO3MYILCHHCM MOJIA CKOPOCTEH, H BO3HAKAIOIIHE B ITOM
CIyqac BO3MYILCHHA MMCIOT Tako# X¢ HOpAAOK ANHMHLI BOJHBE, Kak H raybuna cnos. Ipn masnoit pas-
HOCTH TEMNCPATYP B CJioe HEYCTONYKBOCTL Habmonercd, ecn cofi EMeeT HeGonmburyio ray6uny. Ipa
6onee CylLieCTBEHHBIX Pa3HOCTAX TCMICPATYP TOHKHE H TOJICTHIC CJIOH ABISIOTCA HEYCTORYHBLIMH, CIIOH
x¢ yMmepeHHO#! riyGunbl ycToliwnsnl. Korga pa3rocTh TEMIEpaTyp NPEBOCXOIAT ONPEACICHHOS 3Have-
HHE, CJI0H He ABJIACTCA YCTOHIMBLIM HM NpH xakoll rny6uue. 3TH, a TAKXKC NPYTHE PE3YNbTAThL, ONACH-
BalOUWHe YCTOXYABOCTD CJION, NOMY4EHH! C HCTOABL30BaHHEM Oe3pa3MEpHBIX NapaMETPoB, IO KOTOPHIM
MOXHO CONOCTABATh TCOPETHICCKHE H IXCNCPHMEHTAIbHBE JAHHMIE,
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